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Abshacr The method of surface Green function matching (SGFM) is extended to the case of an 
arbitrary number N of interfaces so that all the SGFhi formulae are obmiaed in a compact N x N 
matrix (or s u p e d x )  form ready for practical calculations. As an example, shear (surface 
horizontal) waves in a Ni-W-AI-Ni structure are studied by a straightfonvard application of the 
general formulae. The range of applications of physical interest is stressed. 

1. Introduction 

In the most common types of heterostructures one has to solve a matching problem at one 
(single hetemjunction) or two (quantum well or superlattice) physically distinct interfaces. 
However, there are more complicated heterostructures of physical interest for which one has 
to match at a larger number N of different interfaces. Some examples of heterostructures are 
a polytype superlattice, an arbitrary sequence of wells and barriers or a multilayer system 
of Fibonacci or Thue-Morse type. 

In the surface Gr&n function matching (SGFM) method the extension from one to two 
interfaces is made by defining the simultaneous bi-projection on the two-surface domain [I], 
which is the entire interface domain where matching is effected. For a given bulk medium 
the Green function is a matrix of order n, depending on the model or the physical problem 
under study. Then the bi-projection is of order 2n, i.e. a 2 x 2 supermatrix in which each 
element is an n x n matrix. We shall refer to these ,as ‘matrix elements’, or simply as 
‘elements’, on the understanding that they~may be matrices (a point which is irrelevant for 
the analysis to follow). 

The purpose of this paper is to present the extension of the SGFM method to the N- 
interface problem embodied in a compact algebra in term of N x N supermatrices that result 
from the simultaneous N-projection at all interfaces involved. This allows for a concise 
formulation which yields a systematic algorithm that can be used for practical calculations. 

The SGFM method can be equally developed for continuous systems, described in 
terms of differential equations, or for discrete systems, described in terms of matrices, 
such as discrete lattice dynamics or electronic structure calculations based on tight-binding 
models [I]. The case of continuous systems will be explicitly discussed here, although the 
way to do the same for discrete systems is obvious. Section 2 presents the formulation 
of the problem, giving the general form of the total Green function of the entire structure 
in terms of the Green functions of the constituent media. Section 3 describes how the 
simultaneous matching is done, leading to the matching formula. Section 4~ demonstrates 
with some applications how the method works in practice and final comments are made in 
section 5. 
0953-8984/95/102037+13$19.50 @ 1995 IOP Publishing Ltd 2037 
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Figure 1. A general heteroaructure with N interfaces and N domains. Note that domain 1 is 
disjoint and consists of L on the left and R on the right. The symbols ij denote the projections 
on the different interfaces. 

2. Formulation of the problem for continuous systems 

Figure 1 displays the structure under study and part of the notation. The unit projectors 
on the different interfaces are denoted by i j .  Each constituent medium has an extended 
bulk Green function G j .  We stress that each Gj is the Green function of an extended 
pseudomedium [I, 21 which satisfies the same differential equations in domain j and arbitrary 
boundary conditions at its interfaces. In simple cases these can be just the Gj of the 
regular hulk media j, but sometimes it may be convenient in practice to use the flexibility 
provided by the arbitrary choice of boundary conditions in order to effect some practical 
simplifications [l, 2-41; in any case we stress that all the Gj are bulk Green functions. The 
purpose of the analysis is to match -dl these Green functions at the N interfaces and thus 
obtain the Green function G,r of the full structure in terms of the given Gj.  One technical 
point should be noted (figure I). On the left we  have a medium L with bulk Green function 
Gt and on the right a medium R with G R .  so we have N interfaces and N + 1 physically 
different media. As in the case of the quantum well [I] it is convenient to define formally 
domain 1 to consist of L/R on the lefvright. Then medium 1 is, by definition, medium 
L/R on the IefUright and G I  is G L / G R  in L/R. We then have formally N interfaces and 
N media. 

Consider now domain j ,  bounded by the interfaces ij-1 and i j .  We define the partial 
surface projector 

Zj = ij-I + i j  (1) 

which spans the space of 2 x 2 supermatrices. Consequently we define, out of GI,  the 
projection 

E j  = ZjGjZ;. (2) 

The total surface projector is 

(3) 

In the matrix representation Z is the N x N unit supermatrix matrix, i.e. all diagonal 
elements are equal to ‘unity’, which simply means the number one if n = 1 (a scalar 
problem, like a one-band Schrodinger equation) or the n x n unit matrix if n z 1. We 
shall henceforth denote this as ‘unity’ without the need for further explanation. Thus, in 
the supermatrix format of Z, the partial projector i j  has ‘unity’ in the jth diagonal element 
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and zero elsewhere and Tj has 'unity' in the ( j  - 1)th and j th diagonal elements and zero 
elsewhere. In the space of Z; the.projection Gj is the 2x2 supermatrix 

When this is represented in the N x N supermatrix format of I ,  the four non-vanishing 
elements ofZcjIarethoseof(4)inthepositions labelled ( j -1 , j - l ) ,  (j-1, j ) ,  ( j ,  j-1) 
and ( j ,  j) as row and column indices of the N x N supermatrix. We note that with the 
present notation 61 is a particular case. In the space of TI (which, by definition, is il  + iN) 
this is the 2x2 diagonal supermatrix 

Any G j  for j > 1 is a propagator which can propagate from ij-l to i j ,  or vice.versa, through 
a medium j .  The topology of domain 1 is different, as it consists of two disconnected 
subdomains. The block diagonal form of (5 )  corresponds to the fact that there is no 
propagation from, say, i ,  to iN with propagator G L  or vice versa. Thus when GI  is 
represented in the N x N supermatrix format of 2, it has the non-vanishing elements (1, 1) 
and (N, N) and the rest are all zero. 

Now in the final results all intervening elements are put together in the large N x N 
supermatrix format, but many algebraic steps, including marrir inversions, are' canied out 
in the smaller space of 2x2'supermatrice.s. Obviously the large matrix ZGjZ cannot be 
inverted, but the small matrix 2;:42;. can, in the space of Z;, and after inversion the result 
can be put in i t s  place in the large N x N supermatrix format. Symbols like 8;' will be 
often used in this sense. Strictly speaking this is to be understood as 2;.6;'Z; so that by 
definition 

Z.&'Z.Z.G.Z. I j J I  I I - I  -T.G-'&Z. j I I -  --. I (6) 

which can be conveniently abbreviated as 

= z;. (7) 

It is understood that there is everywhere a dependence on the eigenvalue variable, 
say energy E or frequency w, and on the ZD wavevector R introduced by the ZD Fourier 
transform, so that only the dependence on the position variable z is explicitly displayed. 
A symbol like (ij-IIGjlij) denotes the value of (zIGjlz') when z is at the position 
corresponding  to the ( j  - 1)th interface and z' at that of the j t h  interface. We shall 
indicate by z j  that z is in the domain j .  so that (zjlGlzh) when j # k is zero if G is any of 
the G,, but is just what we want to obtain if G is G,7. Again, (zIIGI~z;) requires special' 
consideration, depending on whether 1 means L or R. Thus 
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We note the following. (i) This is , (zjlGjlZj) when put in the large format of N -  
supervectors. In the space of 5 it would be only a 2-supervector. (ii) Each component is 
an n x n matrix. This is a row supervector. Likewise, we define the column N-supervector 
, (Z,lGjlzJ with the two non-vanishing components , (ij-lIGjlzj) and , (ijlGjlzj). As 
particular cases we have again 

(ZL (GI 14 ) = {ZL IGLIG) = [bi lGi P i  ), 0, . . . ,O, 01 
(zRIGIIZI) = (zRIGRIZI) = [o,o, .... 0, (ZRIGR~~N)]. 

(10) 

.... 

Figure 2 Illustrating the physical meaning of the reflection and transmission objects defined in 
the text. 

Then the form of the generic elements of G, is 

(ZjlGslZ:.) = (ZjIGjlZ~) + (zjlGj15)(2;la(j)lzj)(zjIGjlz~.) 
(ZjlGslZ;) 

(11) 
(ZjlGj 14) (zj l mj, k) 1V.d (Z, IGx Iz;) 

as in the usual SGFM analysis [I]. The meaning of the reflection, R(j) ,  and transmission, 
T(j,  k), objects is displayed in figure 2 and we recall that, by definition, these have the 
nature of T-matrices in the sense of scattering theory. This is why the propagators after 
interaction with the interfaces are the known 'unperturbed' bulk propagators, so the problem 
is reduced to finding the reflection and transmission objects. It is clear by inspection of (10) 
and of figure 2 that the four non-vanishing elements of R(j) in the large N x N supermatrix 
formatarethoselabelled0'-1, j - l ) , ( j -1 ,  j ) , ( j ,  j - l ) and( j ,  j ) ,  whilethoseofT(j,k) 
a r e ~ - l , k - l ) , ( j - l . k ) , ( j , k - l ) a n d ( j , k ) .  Thewejork=lhasagainaspecia l  
form. Firstly, (&]'R(l)lz~) consists only of the two disjoint elements (1, 1) and ( N ,  N ) ,  
the rest being zero. Secondly, (Z1[7(l, j) lZl) consists of two disjoint pairs of elements, 
one formed by those with labels (1, j - I), (1, j) in row 1 and another one formed by those 
with labels ( N ,  j - l), ( N ,  j )  in row j ,  the rest being zero. Likewise 7 ( j .  1) consists of 
two disjoint pairs of elements, one constituted by elements ( j  - 1, l), ( j ,  1) in column 1 
and the other one by elements (j  - 1, N ) ,  (j. N )  in column N ,  the rest being also zero. 
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From the first of equations (11) we obtain the projection 

(zj IC, 15) = (zj lej I<) + (5 lej lz j ) (Zj  IR(j) 15) (zj lejlzj). (12) 

Note that this is part of the N x N supermatrix Cs but, as it stands, (11) is strictly an 
equality between 2 x 2 superma!ices and in their own space we can cany out the desired 
matrix algebra, including matrix inversion as explained above. 

In this space, this yields 

Although appears here, the fact of having GI:' on the left and on the right automatically 
carries the corresponding projector Zj on both sides, so the Gs appearing in a formula like 
(13) is,~by definition, identically the LHS of (12). Therefore 

(Z~IG,JZ;) = (Z~IG~IZ;) + (Z~IG.IZ;)G; - 1 -  (G, - G j ) G ; l ( z j ~ ~ j ~ ~ j ) .  ' 

(Zj IC3 11,) = (5 I Gjl5)  (5 I2-G. k) IT,) (Zk IGk lZk) 

(14) 

Likewise from the second of equations (11) we obtain the projection 

(15) 

which is again an equality between 2 x 2 supermatrices. from which we obtain 

whence 

(zjlGIz[) = (ZjIGjl4)Gj -' ( z. I lGs IT,) 5;' (I,] G k  lz;). (17) 

The results (14) and (17) constitute the formal extension to the N-interface case of the 
standard SGFM results for N = 2, as do (13) and (16). If we can calculate c,, then (14) 
and (17) yield all desired elements (zlG,lz') for z and z' anywhere. This can be obtained 
by imposing the matching conditions~at the interfaces, whereby the scattering problem of 
calculating the reflection and transmission objects R and 7 is transformed into an exact 
matching analysis. This will be done in the next section. 

3. The matching formula for continuous systems 

The details of the matching formula for cS depend on the matching conditions to be imposed, 
which in turn depend on the physical problem under study. To fix ideas we shall first discuss 
one specific case and then give the general result. Consider, for instance, the one-band 
effective-mass model for a medium j with Green function Gj. The discontinuity of its 
derivative is 

where 
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In this case in wavefunction terms one has to match the amplitude @ and the derivative *' 
divided by m. This can be cast as the matching of s-'p'/@, which is a weighted logarithmic 
derivative. In Green function terms the matching formula for Gs involves quantities of the 
form 

(20) 

which are weighted logarithmic derivatives in Green function language [l]. Allowing for 
some more generality we shall formally consider the case in which the Gj  and sj are matrices 
but the matching rules call for continuity of amplitudes and derivatives weighted with the 
prefactor s1:', which can also be a matrix. In this way the analysis takes a form that is 
more suitable for the immediate extension to the general case, while keeping the form of 
the familiar analysis involving the matching of weighted logarithmic derivatives. 

The script symbols involved in (18)-(20) denote projections at one single surface. Our 
task is to extend this analysis to the simultaneous projections introduced in section 2, for 
which it is necessary to introduce some further elements of notation. Given sj for a medium 
j we define the 2 x 2 diagonal supermatrix Zj$,?Zj or, in abbreviated form, simply 5;'. 
which has s1? in its two diagonal elements and zero in the two off-diagonal ones. Put in 
the large format of the N x N supermatrix this becomes Z$;'Z, which has only two non- 
vanishing diagonal elements, namely ( j  - 1. j - 1) and ( j ,  j ) ,  both equal to slT'. Obviously 
Z$'Z has again a special form: the (1.1) element is sL1, the (N, N )  element is s i 1  and 
the rest are zero. It is also convenient to abbreviate the notation for the derivatives so that 
(zl'Glz') denotes the derivative with respect to z .  Suppose z and z' are in the domain j, 
so G is Gj. and z and z' tend to the interfaces. If they tend to different interfaces, then 
the symbols (ijl'Gjlij-l) and (ij-ll'Gjlij) are self-explanatory. If both tend to the same 
interface, then (ijrGy)lij) is defined with the same criterion of (19), the point at which the 
projection is made being the location of ij instead of z = 0. 

Formulae (14) and (17) can now be used to choose appropriate domains for z and z' 
tending to the desired interface and thus express the matching conditions at this interface. 
We start, for instance, from the configuration (ZL, z;). Then from (14) 

~;'(ZLI'G~IZ;) = s;I(zLl'GLIz;) - ~ ~ l ~ z ~ l ' G ~ l ~ ~ ~ ~ ~ ~ l G ~ l ~ ~ ~ ~ l ~ i ~ l G ~ l z ~ ~  

We first let Z L  + z(il)  - 0. Then 

s:l(ill'Gslzi) = s;'(ilI'GLlzi) - sI ( ~ 1 1  GL l [ ~ ) ( i ~ l G ~ l i ~ ) - ' ( ~ ~ I G ~ l z ~ )  

(I) - -1, (3 - I  .c. I = sj Gj Gj 

+ ~ ~ 1 ~ z ~ l ' ~ ~ l ~ ~ ~ ~ ~ ~ l ~ ~ l ~ ~ ~ ~ 1 ~ ~ ~ l ~ ~ l ~ ~ ~ ~ ~ ~ l ~ ~ l ~ ~ ~ ~ 1 ~ ~ ~ l G ~ l ~ ~ ~ .  (21) 

-1 . I (+) . 

(22) + $ - I  I ( i I I I 4 (+) l ~ i ~ ~ ~ i l G ~ l ~ i ~ ~ l ~ ~ ~ l ~ ~ l ~ ~ ~ ~ ~ ~ l G ~ l ~ ~ ~ ~ l ~ ~ i  . I G ~ l z i )  

after which we let zi + z(il) - 0. Then, using the fact that 

(23) 

(24) 

- I  . I (+) . I (-1 . s1 C h l G L  I Z I } - ( ~ I I G ~  I z~) )= i l  

we obtain 
-1 . I (+) . 

s;l(ill'@-)lil) = sI ( z i I  GL Izl)(ilIGLLlil)-'(ilIG~Iil) - il. 
The idea is to obtain the same quantity starting from the configuration (ZZ, z i )  and then to 
express the equality of the two results. Thus, from (17) 

s;' (zzl'G. lzi) = s;' (zzl'G21Zz) (Zzlfi;' 1Pd (&Ifi;' lid (i l  GI id-' (il IGL lz;). (25) 
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d 
Figure 3. A polytype superlaltice. The period mmists of G I  - Gz , . . - GN. The interfaces im, 
in are physically identid io in. il, respeciively. Note the difference with respect io figure 1: 
the domain PI consists of PL and PR in both cam, but now the L and R domains are physically 
identical and there is only one G I  instead of having GL in P, and Gn in Pn, as in figure 1. 
The superlaltice period is d .  

Now consider explicitly the row N-supervector 

(zzI'GzI~z) = [(zzl'GZlid. (zzl'Gzliz), 0.0.. .I. 

On letting zz + z(i1) f O  we obtain 

(ill'6zlzz) = [(ill'Gi-)li1), (ill'Gzliz).O,O ... I. (27) 

Carrying out this process in (25) and taking z; + z ( i l )  - 0, we have 

(28) sz GIIG.~  1~1)  =SZ (211 G z ~ ~ ; ~ I ~ z ) ( ~ ~ I ~ ~ I ~ I ) .  

Matching at il is expressed by the equality of (28) and (7.4). Remembering the disjoint 
nature of domain 1 the result can be identically written as 

-I . , (-) . - I .  I -  

The same process can be repeated for all pairs of configurations of the type (z j ,  zk), (zj+l, z;) 
or (zj: zj) ,  ( z j ,  z i )  with j fixed and k = 1, . . . , N. After some algebra this yields the 
matching formula 

which is the extension of the formula for N = 2 [I] to an arbitrary number N of interfaces. 
More generally, the matching conditions require the continuity of a !inear differential 

form [I] 

A = -3-' 'G + Fe. (31) 

It is immediately obvious that the general matching formula is 



2044 R Pbrez-Alvarez et a1 

The polytype superlattice (figure 3) can equally be studied by combining this analysis 
with the introduction of Bloch periodicity as in the binary superlattice [l]. When the 
extremes of the structure are open so L and R are semi-infinite, there are no cross terms 
between L and R. The off-diagonal elements, or blocks, of ’61, or 21, vanish and these 
supermatrices are block-diagonal. However, in the superperiodic smcture of figure 3 the 
interfaces iN and i, are physically identical, as are in and il. Then the amplitudes at 
i N / i n  are equal to those at im/il except for the phase factor f = exp(iqd), where q is 
the supenvavevector associated with the superperiod d. Then domains L and R appear as 
mathematically linked with the appropriate phase factor and the off-diagonal elements of 
the supermatrices ‘61 and 21 no longer vanish. 

In fact, they become [I] 

The rest of the analysis proceeds exactly as above, and the matching formula is the same 
as that of (30) or (32) with the only difference that ’61 or A1 is now given by (33). 

4. Examples 

As an illustration of the practical use of the method here presented we shall study acoustic 
shear horizontal modes in a double sandwich. This is a simple but non-trivial case involving 
three interfaces, which provides a practical demonstration of the method in action. 

A C 

dc 

D 

Figure 4. A double-sandwich stmcture A-B- 
C-D. 

We shall consider the system sketched in figure 4. Each medium is characterized by its 

In the case of shear horizontal modes the elements entering (32) are 
mass density pu and Lam6 coefficient pu (U =A,  B ,  C, D) .  
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Table 1. Mass densities and shear bulk velocities employed in the calculations. 

2045 

__ 
p (gcm3) U ( 1 0 5 , ~ ~ l )  

Ni 8.m~ 3.219 
Al ~ 2.703 , 3.110 
W 19.300 2.860 

and 
~~ 

0 0  

where for each constituent medium 

and IC is the wavevector parallel to the surface. 
Then (32) is 

(35) 
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3.4 . 

3 

2 4 6 8 10 
U (10'cni'~ 

Figure 5. The horizontal lines give the buk velacities of shear waves in Ni, Al and W employed 
in the calculation. The full CUNeS give the real eigenvalues oblained from (39) for the Ni-AI- 
W-Ni S ~ N C ~ W .  For the dotted lines see text. U is given in !mu-l and K in IO4 cm-'. 

- 
U 2.8 

2.6 

Figure 6. Local density of stales projected at the interfaces of the NI-W-AI-NI smcture as P 

function of o in HZ, for K = 5 x 10'cm-'. 

- 

. 

Figure 5 shows the resulting phase velocities, O / K ,  obtained for the system Ni-AI-W-Ni 
with d(A1) = dm = lOOnm and the input data given in table 1. The horizontal lines give 
the bulk values for Ni, AI and W. These lines separate allowed from forbidden frequencies 
(o = UK), corresponding to oscillatory (propagating) or evanescent amplitudes, respectively, 
for each material. The curves give the velocities of the eigenvalues of (39) corresponding 
to matching solutions. The dotted lines above the Ni threshold will be commented upon 
presently. The thin vertical line at K = 5 x 104cm-' crosses the eigenvalue curves at the 
frequencies indicated 1, 2 and 3. The first one corresponds to a mode localized in the W 
slab, where it has an oscillatory amplitude, while it is forbidden in AI and Ni, with an 
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evanescent amplitude in these materials. This is the only real eigenvalue of (39) for this 
value of K. The nature of the solutions 2 and 3 is displayed in figure 6, which gives the 
local  density of states, obtained from ImTrc?y, projected at the interfaces as a function 
of frequency for K = 5 x 104 cm-'. The thick vertical lines correspond to the horizontal 
thresholds of figure 5. The first peak, labelled 1, would be analytically a 8-function at the 
frequency of the confined mode labelled 1 in figure 5. The broadening is numerical, due to 
the addition of a small imaginary p& to the real frequency, as one always does in practice 
for numerical convenience in order to obtain a smooth spectral function. The DOS rises again 
in the bulk continuum above the Ni~threshold and shows the two humps corresponding to 
the modes labelled 2 and 3 in figure 5 .  As solutions of the secular equation (39) these 
would be complex eigenvalues. Physically they are resonances with the bulk continuum, 
as figure 6 displays. This is the meaning of the dotted lines of figure 5. The same type of ~ 

resonances are found in the study of the electronic structure of quantum wells [7]. 

The picture changes as K increases. More spectral strength tends to.accumulate in the 
lower frequencies as the peaks and humps move down while new features appear in the Ni 
bulk continuum. This also entails changes in the physical nature of the solutions, as can be 
seen in figure 5 (the second vertical thin line) and figure 7, both for K = 16 cm-'. Peak 1 
simply moves down to 1' and retains its physical nature, but hump 2 becomes peak 2' which 
is now a mode confined in the W slab. In figure 5 it is the real eigenvalue 2'. Likewise 
hump 3 becomes peak 3' and this is confined in both the AI and W slabs. Furthermore, new 
humps appear above the Ni threshold, corresponding to two new resonances. This trend 
continues as K increases. Thus the three-interface structure can be fully studied with great 
ease from (39), which is readily obtained by direct application of the simultaneous SGFM 
method. 

5. Final commeots 

The mathematical form of the results presented here has some features worth noting. It 
provides a concise and compact algebra which affects the simultaneous matching at all 
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interfaces involved and allows for an algorithm with which practical calculations can be 
done in simple matrix form. The (super)matrix C?;’ has an appealing block-mdiagonal 
structure which reflects the physical fact that each slab is in contact with its immediate 
neighbours and is also advantageous when it comes to matrix algebra and, in particular, 
inversion. 

The method can be readily used in practice to study rather complicated systems of 
real physical interest, such as those mentioned in the introduction, and others such as the 
modified multiple quantum well often used for laser action, in which a sizable number 
of interfaces can be involved. Another substantial problem arises in the double-barrier 
structures often used to study resonant tunneling, where the electron-polar-optical-phonon 
interaction is known to play a significant role [8]. Here one is interested in the long-wave 
modes of the double barrier, which involves four interfaces. Due to the coupling between 
the mechanical and electrical vibrations, the study of polar optical modes is already non- 
trivial even for a simple quantum well 191. The study of a double-barrier structure of the 
type A-B-A-B-A, with five different media and four interfaces, is rather more involved 
due to the long-range nature of the Coulomb interactions. This is a problem which can be 
readily studied with the simultaneous coupling method presented here. Finally, this provides 
a basis for the solution of a practical problem of considerable importance. Suppose we want 
to do electronic structure calculations of layered structures like ordinary quantum wells or 
binary superlattices but using a fairly elaborate model, like an eight-band envelope function 
model. We have stressed above that the full transfer matrix [SI can be a useful device for 
calculating Green functions [1-3] or wavefunctions [lo]. However, if the constituent slabs 
are sufficiently thick, then due to intrinsic mathematical reasons serious numerical problems 
soon appear in practice. The well known problem of the stiffness of differential systems [ 111 
is an example of this type of problem. 

The simultaneous matching method presented here provides a neat way to get round 
these practical difficulties. If a given slab is so thick that the integration of the 
differential system through it presents numerical problems, then it suffices to define arbitrary 
intermediate interfaces and effect the simultaneous matching as explained. The thicknesses 
of the partial slabs thus defined can be conveniently defined so that integration through them 
causes no problem. The practical difficulty of integrating through troublesome distances is 
thus totally avoided by throwing the~weight of the calculation into a simple matrix algebra 
which presents no numerical difficulties. Work on this and on the polar optical modes of 
double-barrier structures is currently going on in our laboratories. 
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